

КАЛОРИМЕТРИЧЕСКИЕ ЭФФЕКТЫ ПРИ МАРТЕНСИТНЫХ ПРЕВРАЩЕНИЯХ В СПЛАВЕ ТІЛІ С ПАМЯТЬЮ ФОРМЫ

Еа для процесса

Нечаев Ю.С.¹⁾ (yuri1939@inbox.ru), Денисов Е.А.²⁾, Шурыгина Н.А.¹⁾, Филиппова В.П.¹⁾

¹⁾Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина, Москва, Россия ²⁾Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Библиография

1. Нечаев Ю.С., Денисов Е.А., Шурыгина Н.А., Синёва С.И., Мисоченко А.А., Столяров В.В. Калориметрические и объемометрические исследования дислокаций при мартенситных превращениях в сплаве TiNi с памятью формы. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2023 (в печати).

2. Misochenko A.A., Kumar J.V.T., Jayaprakasam S., Padmanabhan K.A., Stolyarov V.V. Microstructure evolution and mechanical behavior in shape memory nanostructured TiNi alloy. // Defect and Diffusion Forum. 2018. V. 385. P. 169-174.

3. Misochenko A.A., Stolyarov V.V. Deformability and shape memory properties in Ti₅₀Ni₅₀ rolled with electric current. // Materials Science Forum. 2013. V. 738-739. P. 383-387.

4. Nechaev Yu.S., Alexandrova N.M., Cheretaeva A.O., Kuznetsov V.L., Oechsner A., Kostikova E.K., Zaika Yu.V. // Int. J. Hydrogen Energy. 2020. V. 45. № 46. P. 25030-25042.

5. Нечаев Ю.С., Александрова Н.М., Шурыгина Н.А., Черетаева А.О., Денисов Е.А., Костикова Е.К. // Известия РАН. Серия Физическая. 2021. Т. 85. № 7. С. 918-925. 6. Zhang Q., Song W.P., Li X.H., Stolyarov V.V., Zhang X.Y. // Materials Science and Technology. 2016. V. 32 (12). P.

Таблица 1. Результаты аппроксимации гауссианами калориметрических спектров (из Рис.4 и Рис 5 в [2], уточненная скорость изменения температуры 3 K/min); А – аустенит; М – мартенсит; R – «промежуточный» мартенсит; *T*_{max} – температура наибольшего теплового потока для данного гауссиана; *γ* – доля спектра, отвечающая данному гауссиану; q - тепловой эффект процесса (q > 0 при выделении тепла); ΔH – энтальпия процесса; Ea – энергия активации для процесса 1 порядка.

Гауссиан #, (рис. # из [1]), процесс [2]	T _{max} , K	ү, доля спектра	q = -ΔН, Дж/г	q = -ΔH, [2], Дж/г	Еа для процесса 1 порядка, кДж/моль
1, (1a), A→M [2]	249	~1.0	17.5	17.9	68
1, (16)	245	0.32	5.8		45
2, (16)	249	0.68	12.3		80
1, (1в), М→А [2]	292	~1.0	-18.6	-21.0	100
1, (1r)	287	0.53	-10.6		68
2, (1г)	294	0.47	-9.3		151
1, (2a), R→M [2]	248	0.65	7.8	7.9	95
2, (2a), A→R [2]	288	0.35	4.2	4.7	152
1, (2б), R→M [2]	248	0.63	7.8	7.9	95
2, (26)	288	0.20	2.5		208
3, (2б)	290	0.17	2.1		89
1, (2в), А→М [2]	309	~1.0	-17.5	-18.4	173
1, (2r)	309	0.72	-13.2		124
2, (2r)	310	0.28	-5.2		298
1, (2д)	306	0.19	-3.7		72
2, (2д)	309	0.65	-12.2		156
3, (2д)	310	0.16	-3.0		337

Рис. Аппроксимация двумя Рис. Аппроксимация одним

???

от напряжения. // Журнал Технической Физики. 2017. Т. 87. № 2. С. 204–210.

и сплавах. // Физика Металлов и Металловедение. 2020. Т. 121. № 10. С. 1059-1087.

№ гауссиана, q = -ΔH, 1 порядка, кДж/моль

Таблица 2. Результаты аппроксимации гауссианами калориметрических спектров (из Рис.1 и Рис 2 в [3], уточненная размерность по оси ординат W/g, уточненная скорость изменения температуры 3 K/min).

1200-1205.

7. Nechaev Yu.S. On mechanisms of grain boundary sliding, in light of the Kaibyshev-Valiev data on two limit "nonequilibrium" GB states in deformed metallic materials. // Defect and Diffusion Forum. 2018. V. 385. P. 120-125.

8. Егоров С.А., Волков А.Е. О зависимости энтальпии прямого мартенситного превращения в никелиде титана

9. Спивак Л.В., Щепина Н.Е. Калориметрические эффекты при структурно-фазовых превращениях в металлах

Ι	гауссианами (м	(методология			5])
ł	калориметрически	łΧ	спектров	ИЗ	Рис.
1b_2 (cooling) в работе [3].					

(методология [4, 5]) гауссианом калориметрических спектров из Рис. 1а_1 (cooling) в работе [3].

Рис. 3. Определение (из данных на Рис. 2) кинетических кривых (методология [4, 5]) изменения теплосодержания в сплаве TiNi с памятью формы при мартенситном превращении при охлаждении со скоростью 3 К/мин в интервале 170-370 К.

(рис. # и № кривой из [3]), процесс из [3, 2]	T _{max} , K	ү, доля спектра	Дж/г	
1, (1a_1), M→A (heating)	342	~1.0	-7.9	151
1, (1b_1), M→A (heating)	347	~1.0	-7.5	147
1, (1b_2), M→A (heating)	330	~1.0	-5.1	190
1, (1b_2), A→R (cooling)	308	0.3	1.6	210
2, (1b_2), R→M (cooling)	283	0.7	3.7	99
1, (1a_1), A→M (cooling)	307	~1.0	8.5	129
1, (1b_1), A→M (cooling)	307	~1.0	8.3	147
1, (2_1), A→R (cooling)	306	0.43	1.1	47
2, (2_1), R→M (cooling)	256	0.57	1.5	19
1, (2_1), M→A (heating)	314	~1.0	-3.0	43
1, (2_2), A→R (cooling)	308	0.21	1.0	82
2, (2_2), R→M (cooling)	276	0.79	3.6	27
1, (2_2), M→A (heating)	323	~1.0	-4.9	81
1/3, (1a_1), M→A (heating)	338	0.55	-4.5	131
2/3, (1a_1), M→A (heating)	343	0.33	-2.7	256
3/3, (1a_1), M→A (heating)	346	0.12	-1.0	541
1/3, (1b_1), M→A (heating)	343	0.59	-4.5	129
2/3, (1b_1), M→A (heating)	348	0.25	-1.9	247
3/3, (1b_1), M→A (heating)	351	0.16	-1.2	491
1/3, (1b_2), M→A (heating)	324	0.18	-0.9	86
2/3, (1b_2), M→A (heating)	329	0.56	-3.0	232
3/3, (1b_2), M→A (heating)	332	0.26	-1.4	389
1/3, (2_2), M→A (heating)	317	0.41	-2.5	24
2/3, (2_2), M→A (heating)	318	0.31	-1.9	91
3/3, (2_2), M→A (heating)	326	0.28	-1.7	178

